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7. Discussion of results and their implication for the correction system.

The local decoupling technique proved effective in correcting triplet skew quadrupole errors by relying only
on measurable quantities. The simulation results also showed that all coupling sources in the machine could
be corrected by local decoupling, should that be desirable.

RHIC is adopting the solution to correct the skew quadrupole errors caused by the triplet with the 12 skew
quadrupole correctors that are part of the C2 triplet corrector packages, and to rely on the minimum tune
separation correction (2+2 skew quadrupole families) for correction of other coupling sources in the
machine.
The old baseline corrector configuration for RHIC included power supplies only for the C2 correctors in the
6 and 8 o’clock interaction regions (low β* triplets). The 12 skew scheme presented here would require 8
more power supplies for the high β* C2 triplet correctors, a modest investment that will greatly improve the
correction quality and reliability, as discussed in Section 5.

For the systematic study conducted here, the assumption was made that we can measure coupling at every
beam position monitor (BPM) in the machine. Only a subset of RHIC BPMs are double view, the ones
located in the interaction region areas, while the BPMs in the arcs are single plane. However, it was verified
that the existing 2 plane BPMs provide enough coupling information for the preferred scheme (12 skew trip-
let correctors) to work.
In order to correct all coupling locally, coupling information from the arc is required: the local coupling
algorithm implementation in TEAPOT is being extended so that the coupling at 1 arc horizontal (vertical)
BPM can be inferred by measurements at the 2 adjacent vertical (horizontal) BPMs.
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Figure 5a: Eigenangles [rad] in the presence of all errors and corrections

Figure 5b: Dispersions [m] in the presence of all errors and corrections
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The maximum excitation allowed in the triplet C2 skew quadrupole correctors, 50 Amps corresponds to a
maximum integrated strength of 1.46 10-3 m-1. For the hybrid solution with 12 triplet skew quadrupoles
operated in local decoupling mode, the quadrupole setting statistics over 6 seeds are:

mean: < |kL| > = 0.420 * 10-3 m-1 or < |I| > = 14.38 Amps
sigma: σkL    =  0.295 * 10-3 m-1 or σI    = 10.10 Amps

All the correctors are well within the system capability, with the exception of 1 skew corrector in seed 2,
which exceeds the limit by 25%. In an instance like that, one can set the corrector to the maximum allowed
strength and reapply the correction, with minimum impact on the correction quality.

6. Simulation with full set of errors
As already remarked, the systematic study of the triplet correction has been performed on an ideal RHIC
storage lattice perturbed only by quadrupole roll error, for the conceptual reason of isolating the problem and
the practical one of CPU time. The local coupling correction of the triplet errors has however been tested in
the context of the full RHIC simulation, when all other errors and correction are also modelled.
The baseline ‘MAC94.2’ set of alignment and multipole errors as well as the RHIC standard set of correc-
tions (tuning, chromaticity, triplet corrections) has been used, with the “dead reckon” compensation of trip-
let skew quadrupole errors substituted by local decoupling.   The results for 4 error distributions are
summarized in Table 6. Both the residual coupling and vertical dispersion are acceptable for RHIC and the
skew quadrupole strengths required are in within the present system specifications.

Figure 5a and 5b show respectively the final result for the eigenangles and dispersions after all error and cor-
rections are applied (seed 1).

Table 6: Simulation with the full set if errors and corrections

SEED max eigenangle
[degrees]

max vertical
dispersion [m]

max skew quad
|kL|  [m-1]

0 3.1 0.34 0.771 10-3

1 2.6 0.51 0.782 10-3

2 3.7 0.62 0.778 10-3

3 4.7 0.82 0.144 10-3
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Figure 4a: Residual eigenangles [rad] for the hybrid solution (skew_4 scheme), seed 3

Figure 4b: Horizontal and residual vertical dispersion [m] for the hybrid solution (skew_4 scheme), seed 3
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Figure 3a: Residual eigenangles [rad] for the hybrid solution (skew_12 scheme), seed 3

Figure 3b: Horizontal and residual vertical dispersion [m] for the hybrid solution (skew_12 scheme), seed 3
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pling correction and the ‘hybrid’ correction scheme.

A pure local decoupling solution as well as a hybrid solution with 12 triplet skew quadrupole correction look
feasible on the basis of these results. The performance of the local decoupling with 12 independent skew
quadrupole are better than with 4 skew quadrupoles.
Furthermore, for 3 error distributions, a satisfactory solution could not be directly found when only 4 skew
quadrupoles were used (local_4), unless more manipulations, like applying the errors in 2 steps, were con-
sidered. Although that could be achieved, for instance by staged correction during the beta-squeeze process,
it would add a further degree of complexity to the operation.
Figure 3a and 3b show the residual eigenangles and vertical dispersion for seed 3 when the local_12 scheme
is used and Figure 4a and 4b show the same quantities for the local_4 scheme.

Table 4: Correction of arc-like and triplet skew errors with 12 triplet skew correctors (local_12)

SEED max eigenangle
[degrees]

max vertical
dispersion [m]

max skew quad
 kL [m-1]

0 1.7 0.70 0.813 10-3

1 1.1 0.36 0.829 10-3

2 2.3 0.12 0.217 10-2

3 1.0 0.40 0.993 10-3

4 3.4 0.31 0.483 10-3

5 1.7 0.37 0.834 10-3

Table 5: “Hybrid” solution: correction of arc-like skew errors with 2 families (global_2) and triplet
skew errors with local decoupling (local_12 or local_4)

SEED triplet correction
scheme

max eigenangle
[degrees]

max vertical
dispersion [m]

max skew quad
kL [m-1]

0 local_12

local_4

0.9

8.6

1.01

1.35
0.948 10-3

0.118 10-2

1 local_12 1.1 0.25 0.610 10-3

2 local_12 3.4 0.34 0.188 10-2

3 local_12

local_4

1.0

2.8

0.52

0.50
0.974 10-3

0.325 10-3

4 local_12

local_4

1.7

5.7

0.40

0.74
0.817 10-3

0.762 10-3

5 local_12 1.1 0.24 0.873 10-3
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5. Application to RHIC: local decoupling schemes
In order to study possible decoupling schemes, a random generation of skew quadrupole errors has been
used in the lattice quadrupoles (triplet, IRs, arc) for the otherwise ideal RHIC lattice, in the storage configu-
ration where 2 IRs (6 and 8 o’clock) are tuned to β*=1m and the remaining 4 IRs to β*=10m. At injection all
the IRs are tuned to the higher β* and hence the coupling caused by the triplets is lower.
As discussed in Section 3, local decoupling needs measurement of coupling and a number of independently
powered skew quadrupole correctors. For the tests described and simulated here the assumptions are that we
can measure coupling at every RHIC beam position monitor and that we have 12 independently powered
skew quadrupole correctors located in the 12 RHIC triplets in the 6 IRs. The possibility of using 1 quadru-
pole out of every skew quadrupole family circuit has also been considered: that would provide a total of
extra 12 skew quadrupoles that could be independently powered. (See Section 2). A more detailed discus-
sion of the available and suggested hardware will follow in Section 8.
Several solutions of the following types have been investigated:

“pure” local solutions: all skew errors are corrected by local decoupling, with the 12 skew triplet
correctors (local_12) or with 24 skew correctors (local_24: 12 triplet correctors
and 12 from families circuits)

“hybrid” solutions: arc-like errors are corrected with 2 families set up to minimize the tune
separation (global_2) and triplet errors are corrected with local decoupling
(local_12 or local_4, where only the correctors in IR6 and IR8 are used)

Table 3 below summarizes the comparison of possible correction schemes for a random distribution of 1
mrad roll errors in all lattice quadrupoles. When all errors, triplet included, are corrected by global decou-
pling, the residual eigenangles and minimum tune separation are rather large. A typical criterion for cou-
pling correction is to obtain eigenangles less than 10 degrees everywhere in the lattice. In the second and
third case, arc-like errors and the high β* triplet errors (in the 10, 12, 2, 4 o’clock IRs) are corrected by glo-
bal decoupling and the low β* triplet errors (6 and 8 o’clock IRs) are corrected by local decoupling, with 4
and 12 skew correctors respectively. The correction quality improves by using 12 correctors. The fourth case
is global decoupling of arc-like quadrupoles and local correction of all triplet errors. The last two cases are
‘pure’ local decoupling corrections of all skew errors, with 12 and 24 skew quadrupoles respectively. In this
case, all schemes other than the first give satisfactory results, especially when 12 triplet correctors are used
to correct triplet errors.

Tables 4 and 5 below summarize results for different random distributions of errors, for a pure local decou-

Table 3: Comparison of coupling correction schemes for a (random) skew quadrupole error
distribution

correction of
arc-like
errors

correction of
high β*

triplet errors

correction of
low β*

triplet errors

max
eigenangle
[degrees]

max vertical
dispersion

[m]

minimum tune
separation

global_2 global_2 global_2 34.4 0.75 0.00758

global_2 global_2 local_4 5.7 0.60 0.00216

global_2 global_2 local_12 1.7 0.50 0.00002

global_2 local_12 local_12 1.7 0.40 0.00002

local_12 local_12 local_12 2.3 0.30 0.00090

local_24 local_24 local_24 0.08 0.36 0.00001
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Figure 2c: Correction with local coupling algorithm (1 skew quadrupole corrector): eigenangles [rad]

Figure 2d: Correction with local coupling algorithm (24 skew quadrupole correctors): eigenangles [rad]
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Figure 2a: 1 mrad roll error in Q3, no correction: eigenangles[rad]

Figure 2b: Correction with calculated value (dead reckoning): eigenangles [rad]
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Q306 quadrupole are summarized in Table 1 and Figure 2a-d.

The first entry (and Figure 2a) describe the uncorrected effect of 1 mrad roll error in the Q3 triplet quadru-
pole when the optics is tuned to β*=1m (in the 6 o’clock and 8 o’clock IRs). The minimum tune separation
in this case is 0.034. The second row (and Figure 2b) show the effect of dead reckoning the roll error by the
calculated value, assuming the error known. As seen in the third row (and Figure 2c), the local decoupling
algorithm can pinpoint the right correction setting when we use only the adjacent corrector strengths as a
variable (1 skew case). If we activate other skew correctors distributed in the lattice (24 skew case), their
strengths can be optimized to virtually suppress coupling far from the source in the machine (see Figure 2d).
The corrector strengths of the remaining skew correctors are 2 orders of magnitude weaker than the correc-
tor next to the Q3 triplet. The same analysis has been repeated for the Q2 and Q1 triplet quadrupoles giving
similar results.
The effect of roll errors (1 mrad) distributed in all the quadrupole in the lattice has also been checked for
several random seeds. The uncorrected effect of the skew errors is summarized in Table 2 below. The mini-
mum tune separation, here and in what follows, has been obtained ‘experimentally’ by asking the simulation
code to tune the lattice to Qx=28.185 and Qy=29.185 and by calculating the difference in fractional tune
after a fixed number of tuning attempts. (The minimization does not and is not expected to converge because
the lattice is coupled). The nominal RHIC tunes are Qx=28.19 and Qy=29.18.

As it can be seen by comparing the result obtained for seed 2, where the value in parenthesis describe the
effect of skew quad errors in the triplets only, the triplets are the dominant effect. Also, the effect depends
noticeably on the error distribution, so for every scheme studied, the results have to be checked for a few
random seeds.

Table 1: Q3 triplet quadrupole rolled by 1 mrad in the 6 o’clock (1 m β*) interaction region.

CONFIGURATION max eigenangle
[degrees]

max vertical
dispersion [m]

skew quadrupole
corrector a1 [m-1]

no correction 45.0 ~0.1 0

calculated setting 4.6 ~0 -0.2119 10-3

local decoupling (1 skew) 0.11 ~0 -0.2232 10-3

local decoupling (24 skew) 0.03 ~0 -0.2205 10-3

Table 2: Effect of a random distribution of roll errors in all quadrupoles.

seed Qx Qy ηy
max [m]

max eigenangle
[degrees]

∆Qmin

0 28.20570 29.13903 0.10 45 0.06667

1 28.14583 29.22622 0.80 30 0.08039

2 28.20272
(28.19847)

29.14425
(29.15447)

0.70
0.45

45
45

0.05847
(0.04337)

3 28.24313 29.11197 0.20 45 0.13116

4 28.19209 29.17663 0.35 45 0.01216

5 28.19926 29.16786 0.20 45 0.03001
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ing the above expressions for RA11 and RA12 in the badness function BC, the latter becomes a function of the

Na skew quadrupole corrector strengths qa
skew. When Nd > Na, as it is usually the case, one can determine the

skew quadrupole corrector strengths by a fitting procedure so that the following conditions are met:

The local coupling algorithm has been successfully applied to correct coupling in various lattices, the SSC
Boosters and Collider as well as LEP. Experimental work towards the application of the method in existing
machines has been carried out at HERA and LEP [7][8].

4. Application to RHIC: tests
Before studying and correcting more complex triplet skew quadrupole error distributions, the decoupling
algorithm has been tested in one simple case when a single roll error is applied to one triplet quadrupole. A
schematic view of the RHIC interaction region area is described in Figure 1 below. The arrows represent the
beam position monitors and the foreseen triplet skew quadrupole correctors, labelled CL and CR, which are
installed next to Q3 triplet quadrupoles. (The triplet quadrupoles being at approximately the same betatron
phase, only one skew quadrupole is needed to correct the effect of the whole triplet.)

Figure 1. Schematic view of the RHIC triplet region.

If we roll one of the triplet quadrupoles Qj by an angle θ, the integrated skew multipole strength in the nearby
corrector needed to compensate the error, can be calculated by:

In particular, if Q3 is tilted by 1 mrad, the predicted setting for the nearby skew corrector is −0.2119 10-3 m-1.
The test consists in applying 1 mrad roll to the Q3 triplet quadrupole (and similarly to Q1 and Q2) in an oth-
erwise ideal RHIC lattice, and checking the local coupling result versus the analytical one. The results for the
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plane. If the coupling is weak, the areas of the 2 eigenellipses differ only by a multiplicative factor indepen-
dent of coupling.

Measurable quantities
By driving the beam in such a way that only 1 mode is excited, the motion at one location in the lattice can
be described in pseudoharmonic form:

The x and y signals are coherent, being at the same frequency, hence their relationship at a specific position
in the lattice is characterized by the ratio of amplitudes (eA) and a phase difference (εA). By collecting turn
by turn x and y positions at a double plane BPM, it is possible to measure the quantities eA and εA with a
network analyzer, and directly derive the matrix elements RA11 and RA12. The coupling can be locally mea-
sured at every double plane BPM in the machine.

Badness and correction of coupling
In order to build a badness function for a minimization procedure, one needs a function that quantifies cou-
pling and that goes to zero in the absence of coupling. As already discussed, the measurable quantities are
eA, which measures the ratio of out of plane vs. in plane oscillations and the phase difference εA.

A natural choice for the coupling badness BC function is the following:

The summation is taken over the number of detectors (BPMs) Nd and the ratio of β’s assures that all detector
measurements will have a comparable weight in the subsequent minimization process.
As already discussed, eA is a function of the off diagonal matrix elements RA11 and RA12, which in turn
allow us to calculate the following influence functions:

The Ro functions represent the effect of the unknown errors at the position of detector d and the TC and UC

functions can be calculated from the unperturbed lattice functions for every skew corrector a. By substitut-
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active. The triplet coupling correction is part of the general triplet correction scheme, which locally compen-
sates for triplet multipole errors. Further details about the triplet correction system can be found in [3] and
[4].
The local compensation of coupling caused by the triplets is necessary to achieve a good quality of correc-
tion. The motivation of investigating an alternative way to correct this effect arises from the fact the “dead
reckoning” method works extremely well, provided we know the error. This may not always be the case:
even if the triplet quadrupoles   are carefully measured and aligned at the beginning, conditions may drift and
cause uncorrected residual coupling errors. An operational way of removing the coupling caused by the trip-
lets is desirable and will be discussed in the following.

3. Local decoupling: basics and operational implementation
The local decoupling technique is part of a general method for operational corrections of errors in accelera-
tors. The general underlying concept is to determine the settings of correctors by minimization of a “bad-
ness” function that   quantifies the effect to be corrected and that is built up by measurable quantities. The
specific badness function will vary for the different correction operations that can be performed, like closed
orbit correction, decoupling, correction of beta functions and vertical dispersion. A complete discussion of
this general correction approach can be found in [5] and only those parts relative to the decoupling algorithm
will be repeated here, that are necessary to explain the results obtained for RHIC. All the correction tech-
niques are implemented in the TEAPOT simulation code [6] in an operational way that can be easily trans-
lated into application software procedures.

Coupled motion formalism.
Given the one turn 4 by 4 transfer matrix M,

in the cartesian space, it can be demonstrated that it is possible to find a coordinate transformation x = GT X
to an eigenbasis where the 1-turn transfer matrix in the new coordinates is diagonal, i.e. has the form

where ΛA and ΛD are the eigenvalues of the matrix M+M.
The A eigenmotion describes an ellipse in the (x,y) space and its major axis is tilted w.r. to the x axis by an
angle θA given by:

An analogous relation exists between the D eigenmotion and the y axis. The eigenangles θA and θD, not
orthogonal in general, are a measure of coupling since for the ideal uncoupled case θA = θD = 0.

Another good measure of coupling is the area of the eigenellipse, given by (πg2|RA12)/βA for the A eigen-
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1. Introduction

This study explores the possibility of operating the present RHIC coupling correction system in local decou-
pling mode, where a subset of skew quadrupoles are independently set by minimizing the coupling as
locally measured by beam position monitors. The goal is to establish a correction procedure for the skew
quadrupole errors in the interaction region triplets that does not rely on a priori knowledge of the individual
errors.
After a description of the present coupling correction scheme envisioned for RHIC, the basics of the local
decoupling method will be briefly recalled in the context of its implementation in the TEAPOT simulation
code as well as operationally.
The method is then applied to the RHIC lattice: a series of simple tests establish that single triplet skew qua-
drupole errors can be corrected by local decoupling. More realistic correction schemes are then studied in
order to correct distributed sources of skew quadrupole errors: the machine can be decoupled either by pure
local decoupling or by a combination of global decoupling (minimum tune separation) and local decoupling
technique. The different correction schemes are successively validated and evaluated by standard RHIC
simulation runs with the complete set of errors and corrections.
The different solutions and results are finally discussed together with their implications for the hardware.

2. The present coupling correction system: hardware and strategy
The main sources of coupling in RHIC are systematic and random a1 (skew quadrupole) multipoles in the
dipoles and roll alignment errors in the quadrupoles. In particular, the triplet quadrupoles, strong and at a
lattice position where the beta functions can be as large as 1300m, are a large source of coupling.
The coupling correction system for RHIC consists of 6 skew quadrupole families (8 quadrupoles in each
family) located near the Interaction Regions (IRs) and 12 triplet correctors (1 skew quadrupole per triplet,
embedded in the C2 corrector packages). It is worth noticing that the 6 families have in reality 12 indepen-
dent power supply circuits, as described in [1]. There are further 36 skew quadrupoles distributed in the lat-
tice but no power supplies are initially planned for them.
The correction scheme presently envisioned for RHIC relies on 4 families of skew quadrupoles set up to
minimize the tune separation at the nominal operating tunes of 28.19 and 29.18. This condition is achieved
by setting the deteminant of the matrix h = m+n+ (where m and n are the off diagonal 2 by 2 matrices in the
once around transfer matrix) to zero. This amounts to 2 independent conditions and in fact the 4 families are
powered in antisymmetric pairs. A detailed description of this method can be found in [2]. The coupling
effect of the triplets is corrected locally by the triplet skew quadrupole correctors by “dead reckoning” the
triplet error, which is assumed known. Only the 4 triplet correctors in the low β* IRs (6 and 8 o’clock) are


